Brief information about the project

Title	AP23488521 Development of an automated seismic
	biomonitoring system using entropy analysis and machine
	learning methods for short-term earthquake forecasting in
	Almaty
Relevance	The city of Almaty is located in a highly seismic region of
	Kazakhstan, as evidenced by the devastating earthquakes of
	past centuries. Strong earthquakes pose a threat of irrevocable
	losses to the population and infrastructure of the country. The
	constant threat of catastrophic earthquakes and their
	consequences makes the problems of ensuring seismic safety
	of the population and earthquake prediction one of the most
	pressing. The project plans to use information-entropy analysis
	and artificial intelligence to solve the problems of short-term
	learning methods for analyzing seismograms and biological
	harbingers will increase the efficiency of early detection of
	signs of seismic activity during the period of earthquake
	preparation.
Goal	The goal of the project is to develop an automated system for
	recording and analyzing seismic biomonitoring data in order to
	identify harbingers anomalies using artificial intelligence and
	machine learning methods, as well as entropy analysis of
	seismograms to solve the problems of complex short-term
	earthquake forecasting in Almaty.
Tasks	1. Collection and preparation of archival data on the sound
	(seismograms) in the city of Almaty for further use in
	classification and identification in order to identify signs of
	earthquake preparation as part of a short-term earthquake
	forecast. 2. Development, testing and patenting of a device for
	recording the sound activity of biological objects: registration
	of sound signals of birds and the formation of a database
	necessary for further analysis of biological harbingers of
	earthquakes. 3. Data analysis to extract audio signal features
	using various processing methods: spectral, cepstral,
	extraction is one step towards realizing a model with the least
	prediction error. In this step, a list of features will be defined
	based on various audio signal analyzes to train machine
	learning models. 4. Preparation and implementation of models
	for earthquake prediction using machine learning algorithms:
	the following machine learning algorithms will be used:
	artificial neural network (ANN), support vector machine
	(SVM), K-nearest neighbors (KNN), naive Bayes (NB)) and
	the best algorithm 5. Training and testing machine learning
	models using GPU-based parallel computing: training will be
	implemented on parallel computing This will help reduce
	training and testing time. 6. Analysis of the performance of
	trained models in terms of calculation time to determine the
	optimal characteristics of the computing device: using various
	CPU and GPU devices, the performance of the devices will be
	analyzed. Based on the result, the optimal resource of the
	device will be selected in terms of price-quality ratio. 7.

Expected and Achieved Results	Preparation of guidelines for the use of a trained model to identify precursors of strong earthquakes in the city of Almaty: demonstration of a working solution with processing of sound signals of biological objects and digital seismograms based on machine learning to identify biological harbingers and increase seismic activity during the preparation of earthquakes. As a result of the research work, a system for recording and analyzing seismograms and audio signals of biological objects will be developed using methods of entropy analysis and machine learning as part of a short-term forecast of earthquakes in the city of Almaty.
Names and Surnames of Research Group Members with Their Identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and Links to Corresponding Profiles	ИбраимовМаргуланКасенович(https://www.scopus.com/authid/detail.uri?authorId=57189617696, https://orcid.org/0000-0002-8049-3911)ЖексебайДауренMypзатулы(https://www.scopus.com/authid/detail.uri?authorId=57204696440, https://orcid.org/0009-0008-1884-4662)ХохловСерикАнатольевич(https://www.scopus.com/authid/detail.uri?authorId=57193160477, https://orcid.org/0000-0001-5163-508X)АгишевАлдиярТалгатович(https://www.scopus.com/authid/detail.uri?authorId=57201661110, https://orcid.org/0000-0001-9788-7485)СкабыловӨлішерӨлиұлы(https://www.scopus.com/authid/detail.uri?authorId=57218876415, https://orcid.org/0000-0002-5196-8252)ХохловАзаматАнатольевич(https://www.scopus.com/authid/detail.uri?authorId=57945306100, https://orcid.org/0000-0001-6987-9058)Суровцева Наталия ВладимировнаАрифуловаИринаАрифуловаИринаАрифуловаИринаАрифуловаИринаАрифуловаИринаАрифуловаИринаАрифуловаОлагакоvа А., Agishev A. DeepLearning for Early Earthquake Detection: Application of
	Convolutional Neural Networks for P-Wave Detection //Applied Sciences (Switzerland) – 2025, 15(7), 3864. DOI: 10.3390/app15073864. https://doi.org/10.3390/app15073864.

Patent information	A patent application has been applied in the framework of the project.
	An application for a patent for an invention has been filed. Application No. 366316 - Patent for an invention. Incoming No. 2025-25681, dated 04/28/2025. Barcode No. 3519388. Application Reg. No. 2025/0401.1, dated 04/28/2025.
	Based on the results of the study, a copyright certificate was received for the program called "Intelligent system for monitoring the sound activity of biological objects" dated November 05, 2024, number: 51101